

Safety Data Sheet

Copyright,2021, 3M Company.All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

Document group:	40-1132-6	Version number:	2.00
Issue Date:	22/08/2021	Supersedes date:	17/11/2019

This Safety Data Sheet has been prepared in accordance with the Preparation of Safety Data Sheets for Hazardous Chemicals Code of Practice (Safe Work Australia, December 2011)

SECTION 1: Identification

1.1. Product identifier

Super 77(TM) Multipurpose Adhesive (Aerosol)

Product Identification Numbers XE-0060-0250-7

1.2. Recommended use and restrictions on use

Recommended use

Adhesive aerosol.

For Industrial or Professional use only.

1.3. Supplier's details

Address:	3M Australia - Building A, 1 Rivett Road, North Ryde NSW 2113
Telephone:	136 136
E Mail:	productinfo.au@mmm.com
Website:	www.3m.com.au

1.4. Emergency telephone number EMERGENCY: 1800 097 146 (Australia only)

SECTION 2: Hazard identification

This product is classified as a hazardous chemical according to the Model Work Health and Safety Regulations, 2011, in accordance with applicable State and Territory legislation.

Refer to Section 14 of this Safety Data Sheets for product Dangerous Goods Classification.

2.1. Classification of the substance or mixture

Flammable Aerosol: Category 1. Gas under pressure: Liquefied gas. Serious Eye Damage/Irritation: Category 2. Reproductive Toxicity: Category 1. Specific Target Organ Toxicity (single exposure): Category 1.

2.2. Label elements

The label elements below were prepared in accordance with the Code of Practice on Preparation of Safety Data Sheets for Hazardous Chemicals (Safe Work Australia, December 2011). This information may be different from the actual product label.

Signal word

Danger

Symbols

Flame |Gas cylinder |Exclamation mark |Health Hazard |

Pictograms

Hazard statements	
H222	Extremely flammable aerosol.
H229	Pressurised container: may burst if heated.
H280	Contains gas under pressure; may explode if heated.
H319	Causes serious eye irritation.
H360	May damage fertility or the unborn child.
H370	Causes damage to organs: cardiovascular system.
Precautionary statements	
Prevention:	
P201	Obtain special instructions before use.
D202	Do not handle until all sofety presentions have been read and understood

P202	Do not handle until all safety precautions have been read and understood.
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources.
	No smoking.
P211	Do not spray on an open flame or other ignition source.
P251	Do not pierce or burn, even after use.
P260	Do not breathe dust/fume/gas/mist/vapours/spray.
P264	Wash thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.
P280K	Wear protective gloves and respiratory protection.
Response:	
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P308 + P313	IF exposed or concerned: Get medical advice/attention.
P337 + P313	IF eye irritation persists: Get medical advice/attention.
Storage:	
P405	Store locked up.
P410 + P412	Protect from sunlight. Do not expose to temperatures exceeding 50°C.
Disposal:	
P501	Dispose of contents/container in accordance with applicable local/regional/national/international regulations.

2.3. Other assigned/identified product hazards

Aspiration classification does not apply as this product is sold in sealed, self-pressurized containers with nozzles designed to prevent formation of a stream during usage. May displace oxygen and cause rapid suffocation.

2.4. Other hazards which do not result in classification

Causes mild skin irritation. May cause drowsiness or dizziness. Toxic to aquatic life.

SECTION 3: Composition/information on ingredients

This material is a mixture.

Ingredient	CAS Nbr	% by Weight	
Acetone	67-64-1	10 - 30	
Liquefied Petroleum Gas	68476-85-7	10 - 30	
2-Methylpentane	107-83-5	10 - 20	
Cyclohexane	110-82-7	10 - 20	
Dimethyl Ether	115-10-6	5 - 20	
Bicylo[3.1.1]Hept-2-ene,2,6,6-	31393-98-3	1 - 10	
Trimethyl-,Polymer with 6,6-Dimethyl-2-			
Methylenebicyclo[3.1.1]Heptane			
Non-volatile ingredients	Trade Secret	1 - 10	
Rosin ester	Trade Secret	1 - 10	
Butanone	78-93-3	< 2	
Pentane	109-66-0	< 2	
Hexane	110-54-3	< 1	
Toluene	108-88-3	< 1	

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation

Remove person to fresh air. Get medical attention.

Skin contact

Wash with soap and water. If signs/symptoms develop, get medical attention.

Eye contact

Immediately flush with large amounts of water. Remove contact lenses if easy to do. Continue rinsing. Get medical attention.

If swallowed

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

Central nervous system depression (headache, dizziness, drowsiness, incoordination, nausea, slurred speech, giddiness, and unconsciousness). Target organ effects. See Section 11 for additional details.

4.3. Indication of any immediate medical attention and special treatment required

Exposure may increase myocardial irritability. Do not administer sympathomimetic drugs unless absolutely necessary.

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

Use a fire fighting agent suitable for the surrounding fire.

5.2. Special hazards arising from the substance or mixture

Closed containers exposed to heat from fire may build pressure and explode.

Hazardous Decomposition or By-Products

<u>Substance</u>	<u>Condition</u>
Aldehydes.	During combustion.
Carbon monoxide.	During combustion.
Carbon dioxide.	During combustion.
Irritant vapours or gases.	During combustion.

5.3. Special protective actions for fire-fighters

Water may not effectively extinguish fire; however, it should be used to keep fire-exposed containers and surfaces cool and prevent explosive rupture.

Hazchem Code: 2YE

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Use only non-sparking tools. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. WARNING ! A motor could be an ignition source and could cause flammable gases or vapours in the spill area to burn or explode. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

If possible, seal leaking container. Place leaking containers in a well-ventilated area, preferably an operating exhaust hood, or if necessary outdoors on an impermeable surface until appropriate packaging for the leaking container or its contents is available. Contain spill. Cover spill area with a fire-extinguishing foam. Working from around the edges of the spill inward, cover with bentonite, vermiculite, or commercially available inorganic absorbent material. Mix in sufficient absorbent until it appears dry. Remember, adding an absorbent material does not remove a physical, health, or environmental hazard. Collect as much of the spilled material as possible using non-sparking tools. Place in a metal container approved for transportation by appropriate authorities. Clean up residue with an appropriate solvent selected by a qualified and authorised person. Ventilate the area with fresh air. Read and follow safety precautions on the solvent label and Safety Data Sheet. Seal the container. Dispose of collected material as soon as possible in accordance with applicable local/regional/national/international regulations.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Do not handle until all safety precautions have been read and understood. Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Do not spray on an open flame or other ignition source. Do not pierce or burn, even after use. Do not breathe dust/fume/gas/mist/vapours/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Avoid contact with oxidising agents (eg. chlorine, chromic acid etc.) Use personal protective equipment (eg. gloves, respirators...) as required.

7.2. Conditions for safe storage including any incompatibilities

Store in a well-ventilated place. Keep container tightly closed. Protect from sunlight. Do not expose to temperatures exceeding 50°C/122°F. Store away from heat. Store away from acids. Store away from oxidising agents.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient	CAS Nbr	Agency	Limit type	Additional comments
2-Methylpentane	107-83-5	ACGIH	TWA:500 ppm;STEL:1000	
			ppm	
Hexane (isomers other than n-	107-83-5	Australia OELs	TWA(8 hours): 1760 mg/m3	
hexane)			(500 ppm); STEL(15	
			minutes): 3500 mg/m3 (1000	
			ppm)	
Toluene	108-88-3	ACGIH	TWA:20 ppm	A4: Not class. as human
				carcinogen, Ototoxicant
Toluene	108-88-3	Australia OELs	TWA(8 hours):191 mg/m3(50	SKIN
			ppm);STEL(15 minutes):574	
			mg/m3(150 ppm)	
Pentane	109-66-0	ACGIH	TWA:1000 ppm	
Pentane	109-66-0	Australia OELs	TWA(8 hours):1770	
	10, 00 0		mg/m3(600 ppm);STEL(15	
			minutes):2210 mg/m3(750	
			ppm)	
Hexane	110-54-3	ACGIH	TWA:50 ppm	Danger of cutaneous
			- ····································	absorption
Hexane	110-54-3	Australia OELs	TWA(8 hours): 72 mg/m3 (20	
	110010		ppm)	
Cyclohexane	110-82-7	ACGIH	TWA:100 ppm	
Cyclohexane	110-82-7	Australia OELs	TWA(8 hours):350	
Cyclonexule	110 02 /	Australia OLLS	mg/m3(100 ppm);STEL(15	
			minutes):1050 mg/m3(300	
			ppm)	
Dimethyl Ether	115-10-6	AIHA	TWA:1880 mg/m3(1000 ppm)	
Dimethyl Ether	115-10-6	Australia OELs	TWA(8 hours):760	
Dimetry Eucl	115-10-0	Australia OELS	mg/m3(400 ppm);STEL(15	
			minutes):950 mg/m3(500 ppm)	
Acetone	67-64-1	ACGIH	TWA:250 ppm;STEL:500 ppm	A4: Not class. as human
Acetone	0/-04-1	АССІП	1 wA.230 ppm, 81 EL.300 ppm	carcin
Apotono	67-64-1	Australia OELs	TWA(8 hours):1185	
Acetone	07-04-1	Australia OELS	mg/m3(500 ppm);STEL(15	
			minutes):2375 mg/m3(1000	
Liquefied Detroloum Cos	60176 05 7	ACCIU	ppm) Limit value not established:	acobyviant
Liquefied Petroleum Gas	68476-85-7	ACGIH Australia OELs	TWA(8 hours):1800	asphyxiant
Liquefied Petroleum Gas	084/0-83-/	Australia OELS		
Deterrer	79.02.2		mg/m3(1000 ppm)	
Butanone	78-93-3	ACGIH	TWA:200 ppm;STEL:300 ppm	
Butanone	78-93-3	Australia OELs	TWA(8 hours): 445 mg/m3	
			(150 ppm); STEL(15	
			minutes): 890 mg/m3 (300	
			ppm)	
Rosin ester	Trade	ACGIH	TWA(as Resin, inhalable	Dermal/Respiratory
	Secret		fraction):0.001 mg/m3	Sensitiser
Rosin ester	Trade	Australia OELs	TWA(as formaldehyde)(8	

Secret	hours):0.1 mg/m3		
ACGIH : American Conference of Governmental Industrial Hygienists			

AIHA : American Industrial Hygiene Association Australia OELs : Australia. Adopted National Exposure Standards for Atmospheric Contaminants in the Occupational Environment CMRG : Chemical Manufacturer's Recommended Guidelines TWA: Time-Weighted-Average STEL: Short Term Exposure Limit CEIL: Ceiling Sen: Sensitiser Sk: Absorption through the skin may be a significant source of exposure.

8.2. Exposure controls

8.2.1. Engineering controls

Do not remain in area where available oxygen may be reduced. Use general dilution ventilation and/or local exhaust ventilation to control airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapours/spray. If ventilation is not adequate, use respiratory protection equipment.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended: Indirect vented goggles

Indirect vented goggles.

Select and use eye protection in accordance with AS/NZS 1336. Eye protection should comply with the performance specifications of AS/NZS 1337.

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing. Note: Nitrile gloves may be worn over polymer laminate gloves to improve dexterity. Gloves made from the following material(s) are recommended: Polymer laminate

if this product is used in a manner that presents a higher potential for exposure (eg. spraying, high splash potential etc.), then use of protective coveralls may be necessary. Select and use body protection to prevent contact based on the results of an exposure assessment. The following protective clothing material(s) are recommended: Apron - polymer laminate

Select and use gloves according to AS/NZ 2161.

Respiratory protection

An exposure assessment may be needed to decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program. Based on the results of the exposure assessment, select from the following respirator type(s) to reduce inhalation exposure:

Half facepiece or full facepiece air-purifying respirator suitable for organic vapours and particulates

Half facepiece or full facepiece supplied-air respirator.

Organic vapour respirators may have short service life.

For questions about suitability for a specific application, consult with your respirator manufacturer. Select and use respirators according to AS/NZS 1715. Respirators should comply with AS/NZS 1716 performance specifications. For information about respirators, call 3M on 1800 024 464.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state	Liquid. aerosol
Specific Physical Form:	Aerosol
Colour	Colourless
Odour	Sweet Odour, Fruity Odour
Odour threshold	No data available.
рН	No data available.
Melting point/Freezing point	No data available.
Boiling point/Initial boiling point/Boiling range	Not applicable.
Flash point	-41.1 °C [Test Method:Tagliabue closed cup]
Evaporation rate	1.9 [<i>Ref Std</i> :ETHER=1]
Flammability (solid, gas)	Not applicable.
Flammable Limits(LEL)	No data available.
Flammable Limits(UEL)	No data available.
Vapour pressure	[Details:Compressed gas]Not applicable.
Vapour Density and/or Relative Vapour Density	2.97 [<i>Ref Std</i> :AIR=1]
Density	0.726 g/ml
Relative density	0.726 [<i>Ref Std</i> :WATER=1]
Water solubility	Nil
Solubility- non-water	No data available.
Partition coefficient: n-octanol/water	No data available.
Autoignition temperature	No data available.
Decomposition temperature	Not applicable.
Viscosity/Kinematic Viscosity	Not applicable.
Volatile organic compounds (VOC)	
Percent volatile	
VOC less H2O & exempt solvents	<=51 % [<i>Test Method</i> :calculated per CARB title 2]
Solids content	>=22.4 %

Nanoparticles

This material does not contain nanoparticles.

SECTION 10: Stability and reactivity

10.1 Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section

10.2 Chemical stability

Stable.

10.3. Conditions to avoid

Heat.

10.4. Possibility of hazardous reactions

Hazardous polymerisation will not occur.

10.5 Incompatible materials

Strong oxidising agents.

10.6 Hazardous decomposition products <u>Substance</u>

None known.

Condition

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labelling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

11.1 Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation

Simple asphyxiation: Signs/symptoms may include increased heart rate, rapid respirations, drowsiness, headache, incoordination, altered judgement, nausea, vomiting, lethargy, seizures, coma, and may be fatal. Respiratory tract irritation: Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness, and nose and throat pain. May cause additional health effects (see below).

Skin contact

Mild Skin Irritation: Signs/symptoms may include localized redness, swelling, itching, and dryness.

Eye contact

Severe eye irritation: Signs/symptoms may include significant redness, swelling, pain, tearing, cloudy appearance of the cornea, and impaired vision.

Ingestion

Gastrointestinal irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhoea. May cause additional health effects (see below).

Additional Health Effects:

Single exposure may cause target organ effects:

Central nervous system (CNS) depression: Signs/symptoms may include headache, dizziness, drowsiness, incoordination, nausea, slowed reaction time, slurred speech, giddiness, and unconsciousness. Single exposure, above recommended guidelines, may cause: Cardiac Sensitization: Signs/symptoms may include irregular heartbeat (arrhythmia), faintness, chest pain, and may be fatal.

Reproductive/Developmental Toxicity:

Contains a chemical or chemicals which can cause birth defects or other reproductive harm.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Dermal		No data available; calculated ATE >5,000
			mg/kg
Overall product	Inhalation-Vapour(4		No data available; calculated ATE >50 mg/l
_	hr)		
Overall product	Ingestion		No data available; calculated ATE >5,000
_	-		mg/kg

Acetone	Dermal	Rabbit	LD50 > 15,688 mg/kg
Acetone	Inhalation-Vapour (4 hours)	Rat	LC50 76 mg/l
Acetone	Ingestion	Rat	LD50 5,800 mg/kg
Liquefied Petroleum Gas	Inhalation-Gas (4 hours)	Rat	LC50 227,000 ppm
2-Methylpentane	Dermal		LD50 estimated to be $> 5,000 \text{ mg/kg}$
2-Methylpentane	Inhalation-Vapour		LC50 estimated to be $> 50 \text{ mg/l}$
2-Methylpentane	Ingestion		LD50 estimated to be > 5,000 mg/kg
Cyclohexane	Dermal	Rat	LD50 > 2,000 mg/kg
Cyclohexane	Inhalation-Vapour (4 hours)	Rat	LC50 > 32.9 mg/l
Cyclohexane	Ingestion	Rat	LD50 6,200 mg/kg
Dimethyl Ether	Inhalation-Gas (4 hours)	Rat	LC50 164,000 ppm
Non-volatile ingredients	Dermal		LD50 estimated to be $> 5,000 \text{ mg/kg}$
Non-volatile ingredients	Ingestion		LD50 estimated to be 2,000 - 5,000 mg/kg
Rosin ester	Dermal	Rat	LD50 > 2,000 mg/kg
Rosin ester	Ingestion	Rat	LD50 > 2,000 mg/kg
Bicylo[3.1.1]Hept-2-ene,2,6,6- Trimethyl-,Polymer with 6,6- Dimethyl-2- Methylenebicyclo[3.1.1]Heptane	Dermal		LD50 estimated to be > 5,000 mg/kg
Bicylo[3.1.1]Hept-2-ene,2,6,6- Trimethyl-,Polymer with 6,6- Dimethyl-2- Methylenebicyclo[3.1.1]Heptane	Ingestion	Rat	LD50 > 34,000 mg/kg
Pentane	Dermal	Rabbit	LD50 3,000 mg/kg
Pentane	Inhalation-Vapour (4 hours)	Rat	LC50 > 18 mg/l
Pentane	Ingestion	Rat	LD50 > 2,000 mg/kg
Butanone	Dermal	Rabbit	LD50 > 8,050 mg/kg
Butanone	Inhalation-Vapour (4 hours)	Rat	LC50 34.5 mg/l
Butanone	Ingestion	Rat	LD50 2,737 mg/kg
Toluene	Dermal	Rat	LD50 12,000 mg/kg
Toluene	Inhalation-Vapour (4 hours)	Rat	LC50 30 mg/l
Toluene	Ingestion	Rat	LD50 5,550 mg/kg
Hexane	Dermal	Rabbit	LD50 > 2,000 mg/kg
Hexane	Inhalation-Vapour (4 hours)	Rat	LC50 170 mg/l
Hexane	Ingestion	Rat	LD50 > 28,700 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value	
Acetone	Mouse	Minimal irritation	
Liquefied Petroleum Gas	Professional judgement	No significant irritation	
2-Methylpentane	Professional judgement	Mild irritant	
Cyclohexane	Rabbit	Mild irritant	
Non-volatile ingredients	Professional judgement	Minimal irritation	
Rosin ester	Rabbit	No significant irritation	
Pentane	Rabbit	Minimal irritation	
Butanone	Rabbit	Minimal irritation	
Toluene	Rabbit	Irritant	
Hexane	Human and animal	Mild irritant	

Serious Eye Damage/Irritation

Name	Species	Value
Acetone	Rabbit	Severe irritant
Liquefied Petroleum Gas	Professional judgement	No significant irritation
2-Methylpentane	Professional judgement	Moderate irritant
Cyclohexane	Rabbit	Mild irritant
Rosin ester	Rabbit	Mild irritant
Pentane	Rabbit	Mild irritant
Butanone	Rabbit	Severe irritant
Toluene	Rabbit	Moderate irritant
Hexane	Rabbit	Mild irritant

Skin Sensitisation

Name	Species	Value
Rosin ester	Human and animal	Not classified
Pentane	Guinea pig	Not classified
Toluene	Guinea pig	Not classified
Hexane	Human	Not classified

Respiratory Sensitisation

For the component/components, either no data are currently available or the data are not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value
Acetone	In vivo	Not mutagenic
Acetone	In Vitro	Some positive data exist, but the data are not sufficient for classification
Liquefied Petroleum Gas	In Vitro	Not mutagenic
Cyclohexane	In Vitro	Not mutagenic
Cyclohexane	In vivo	Some positive data exist, but the data are not sufficient for classification
Dimethyl Ether	In Vitro	Not mutagenic
Dimethyl Ether	In vivo	Not mutagenic
Pentane	In vivo	Not mutagenic
Pentane	In Vitro	Some positive data exist, but the data are not sufficient for classification
Butanone	In Vitro	Not mutagenic
Toluene	In Vitro	Not mutagenic
Toluene	In vivo	Not mutagenic
Hexane	In Vitro	Not mutagenic
Hexane	In vivo	Not mutagenic

Carcinogenicity

Name	Route	Species	Value
Acetone	Not specified.	Multiple animal	Not carcinogenic
		species	
Dimethyl Ether	Inhalation	Rat	Not carcinogenic
Butanone	Inhalation	Human	Not carcinogenic
Toluene	Dermal	Mouse	Some positive data exist, but the data are not sufficient for classification
Toluene	Ingestion	Rat	Some positive data exist, but the data are not sufficient for classification
Toluene	Inhalation	Mouse	Some positive data exist, but the data

			are not sufficient for classification
Hexane	Dermal	Mouse	Not carcinogenic
Hexane	Inhalation	Mouse	Some positive data exist, but the data are not sufficient for classification

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test result	Exposure Duration
Acetone	Ingestion	Not classified for male reproduction	Rat	NOAEL 1,700 mg/kg/day	13 weeks
Acetone	Inhalation	Not classified for development	Rat	NOAEL 5.2 mg/l	during organogenesis
Cyclohexane	Inhalation	Not classified for female reproduction	Rat	NOAEL 24 mg/l	2 generation
Cyclohexane	Inhalation	Not classified for male reproduction	Rat	NOAEL 24 mg/l	2 generation
Cyclohexane	Inhalation	Not classified for development	Rat	NOAEL 6.9 mg/l	2 generation
Dimethyl Ether	Inhalation	Not classified for development	Rat	NOAEL 40,000 ppm	during organogenesis
Pentane	Ingestion	Not classified for development	Rat	NOAEL 1,000 mg/kg/day	during organogenesis
Pentane	Inhalation	Not classified for development	Rat	NOAEL 30 mg/l	during organogenesis
Butanone	Inhalation	Not classified for development	Rat	LOAEL 8.8 mg/l	during gestation
Toluene	Inhalation	Not classified for female reproduction	Human	NOAEL Not available	occupational exposure
Toluene	Inhalation	Not classified for male reproduction	Rat	NOAEL 2.3 mg/l	1 generation
Toluene	Ingestion	Toxic to development	Rat	LOAEL 520 mg/kg/day	during gestation
Toluene	Inhalation	Toxic to development	Human	NOAEL Not available	poisoning and/or abuse
Hexane	Ingestion	Not classified for development	Mouse	NOAEL 2,200 mg/kg/day	during organogenesis
Hexane	Inhalation	Not classified for development	Rat	NOAEL 0.7 mg/l	during gestation
Hexane	Ingestion	Toxic to male reproduction	Rat	NOAEL 1,140 mg/kg/day	90 days
Hexane	Inhalation	Toxic to male reproduction	Rat	LOAEL 3.52 mg/l	28 days

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target	Value	Species	Test result	Exposure
		Organ(s)				Duration
Acetone	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	
Acetone	Inhalation	respiratory irritation	Some positive data exist, but the data are not	Human	NOAEL Not available	

			sufficient for classification			
Acetone	Inhalation	immune system	Not classified	Human	NOAEL 1.19 mg/l	6 hours
Acetone	Inhalation	liver	Not classified	Guinea pig	NOAEL Not available	
Acetone	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	poisoning and/or abuse
Liquefied Petroleum Gas	Inhalation	cardiac sensitization	Causes damage to organs	similar compounds	NOAEL Not available	
Liquefied Petroleum Gas	Inhalation	central nervous system depression	May cause drowsiness or dizziness		NOAEL Not available	
Liquefied Petroleum Gas	Inhalation	respiratory irritation	Not classified		NOAEL Not available	
2- Methylpentan e	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Professional judgement	NOAEL Not available	
2- Methylpentan e	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification		NOAEL Not available	
2- Methylpentan e	Inhalation	cardiac sensitization	Not classified	Dog	NOAEL Not available	
2- Methylpentan e	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Professional judgement	NOAEL Not available	
Cyclohexane	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human and animal	NOAEL Not available	
Cyclohexane	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human and animal	NOAEL Not available	
Cyclohexane	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Professional judgement	NOAEL Not available	
Dimethyl Ether	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Rat	LOAEL 10,000 ppm	30 minutes
Dimethyl Ether	Inhalation	cardiac sensitization	Some positive data exist, but the data are not sufficient for classification	Dog	NOAEL 100,000 ppm	5 minutes
Pentane	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Multiple animal species	NOAEL Not available	not available
Pentane	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Not available	NOAEL Not available	not available
Pentane	Inhalation	cardiac sensitization	Not classified	Dog	NOAEL Not available	not available

Pentane	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Professional judgement	NOAEL Not available	not available
Butanone	Inhalation	central nervous system depression	May cause drowsiness or dizziness	official classification	NOAEL Not available	
Butanone	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	
Butanone	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Professional judgement	NOAEL Not available	
Butanone	Ingestion	liver	Not classified	Rat	NOAEL Not available	not applicable
Butanone	Ingestion	kidney and/or bladder	Not classified	Rat	LOAEL 1,080 mg/kg	not applicable
Toluene	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	
Toluene	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	
Toluene	Inhalation	immune system	Not classified	Mouse	NOAEL 0.004 mg/l	3 hours
Toluene	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	poisoning and/or abuse
Hexane	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	not available
Hexane	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Rabbit	NOAEL Not available	8 hours
Hexane	Inhalation	respiratory system	Not classified	Rat	NOAEL 24.6 mg/l	8 hours

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Acetone	Dermal	eyes	Not classified	Guinea pig	NOAEL Not available	3 weeks
Acetone	Inhalation	hematopoietic system	Not classified	Human	NOAEL 3 mg/l	6 weeks
Acetone	Inhalation	immune system	Not classified	Human	NOAEL 1.19 mg/l	6 days
Acetone	Inhalation	kidney and/or bladder	Not classified	Guinea pig	NOAEL 119 mg/l	not available
Acetone	Inhalation	heart liver	Not classified	Rat	NOAEL 45 mg/l	8 weeks
Acetone	Ingestion	kidney and/or bladder	Not classified	Rat	NOAEL 900 mg/kg/day	13 weeks
Acetone	Ingestion	heart	Not classified	Rat	NOAEL 2,500 mg/kg/day	13 weeks
Acetone	Ingestion	hematopoietic system	Not classified	Rat	NOAEL 200 mg/kg/day	13 weeks

Acetone	Ingestion	liver	Not classified	Mouse	NOAEL 3,896 mg/kg/day	14 days
Acetone	Ingestion	eyes	Not classified	Rat	NOAEL 3,400 mg/kg/day	13 weeks
Acetone	Ingestion	respiratory system	Not classified	Rat	NOAEL 2,500 mg/kg/day	13 weeks
Acetone	Ingestion	muscles	Not classified	Rat	NOAEL 2,500 mg/kg	13 weeks
Acetone	Ingestion	skin bone, teeth, nails, and/or hair	Not classified	Mouse	NOAEL 11,298 mg/kg/day	13 weeks
Liquefied Petroleum Gas	Inhalation	kidney and/or bladder	Not classified	Rat	NOAEL Not available	
2- Methylpentan e	Inhalation	peripheral nervous system	Not classified	Rat	NOAEL 5.3 mg/l	14 weeks
2- Methylpentan e	Ingestion	peripheral nervous system	Not classified	Rat	NOAEL Not available	8 weeks
2- Methylpentan e	Ingestion	kidney and/or bladder	Not classified	Rat	LOAEL 2,000 mg/kg	28 days
Cyclohexane	Inhalation	liver	Not classified	Rat	NOAEL 24 mg/l	90 days
Cyclohexane	Inhalation	auditory system	Not classified	Rat	NOAEL 1.7 mg/l	90 days
Cyclohexane	Inhalation	kidney and/or bladder	Not classified	Rabbit	NOAEL 2.7 mg/l	10 weeks
Cyclohexane	Inhalation	hematopoietic system	Not classified	Mouse	NOAEL 24 mg/l	14 weeks
Cyclohexane	Inhalation	peripheral nervous system	Not classified	Rat	NOAEL 8.6 mg/l	30 weeks
Dimethyl Ether	Inhalation	hematopoietic system	Not classified	Rat	NOAEL 25,000 ppm	2 years
Dimethyl Ether	Inhalation	liver	Not classified	Rat	NOAEL 20,000 ppm	30 weeks
Pentane	Inhalation	peripheral nervous system	Not classified	Human	NOAEL Not available	occupational exposure
Pentane	Inhalation	heart skin endocrine system gastrointestinal tract bone, teeth, nails, and/or hair hematopoietic system liver immune system muscles nervous system eyes kidney and/or bladder respiratory system	Not classified	Rat	NOAEL 20 mg/l	13 weeks
Pentane	Ingestion	kidney and/or bladder	Not classified	Rat	NOAEL 2,000 mg/kg/day	28 days
Butanone	Dermal	nervous system	Not classified	Guinea pig	NOAEL Not available	31 weeks
Butanone	Inhalation	liver kidney and/or bladder heart endocrine	Not classified	Rat	NOAEL 14.7 mg/l	90 days

				1	1	1
		system gastrointestinal tract bone, teeth, nails, and/or hair hematopoietic system immune system muscles				
Butanone	Ingestion	liver	Not classified	Rat	NOAEL Not available	7 days
Butanone	Ingestion	nervous system	Not classified	Rat	NOAEL 173 mg/kg/day	90 days
Toluene	Inhalation	auditory system eyes olfactory system	Causes damage to organs through prolonged or repeated exposure	Human	NOAEL Not available	poisoning and/or abuse
Toluene	Inhalation	nervous system	May cause damage to organs though prolonged or repeated exposure	Human	NOAEL Not available	poisoning and/or abuse
Toluene	Inhalation	respiratory system	Some positive data exist, but the data are not sufficient for classification	Rat	LOAEL 2.3 mg/l	15 months
Toluene	Inhalation	heart liver kidney and/or bladder	Not classified	Rat	NOAEL 11.3 mg/l	15 weeks
Toluene	Inhalation	endocrine system	Not classified	Rat	NOAEL 1.1 mg/l	4 weeks
Toluene	Inhalation	immune system	Not classified	Mouse	NOAEL Not available	20 days
Toluene	Inhalation	bone, teeth, nails, and/or hair	Not classified	Mouse	NOAEL 1.1 mg/l	8 weeks
Toluene	Inhalation	hematopoietic system vascular system	Not classified	Human	NOAEL Not available	occupational exposure
Toluene	Inhalation	gastrointestinal tract	Not classified	Multiple animal species	NOAEL 11.3 mg/l	15 weeks
Toluene	Ingestion	nervous system	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 625 mg/kg/day	13 weeks
Toluene	Ingestion	heart	Not classified	Rat	NOAEL 2,500 mg/kg/day	13 weeks
Toluene	Ingestion	liver kidney and/or bladder	Not classified	Multiple animal species	NOAEL 2,500 mg/kg/day	13 weeks
Toluene	Ingestion	hematopoietic system	Not classified	Mouse	NOAEL 600 mg/kg/day	14 days
Toluene	Ingestion	endocrine system	Not classified	Mouse	NOAEL 105 mg/kg/day	28 days
Toluene	Ingestion	immune system	Not classified	Mouse	NOAEL 105 mg/kg/day	4 weeks
Hexane	Inhalation	peripheral nervous system	Causes damage to organs through prolonged or repeated exposure	Human	NOAEL Not available	occupational exposure
Hexane	Inhalation	respiratory	Some positive	Mouse	LOAEL 1.76	13 weeks

		system	data exist, but the data are not sufficient for classification		mg/l	
Hexane	Inhalation	liver	Not classified	Rat	NOAEL Not available	6 months
Hexane	Inhalation	kidney and/or bladder	Not classified	Rat	LOAEL 1.76 mg/l	6 months
Hexane	Inhalation	hematopoietic system	Not classified	Mouse	NOAEL 35.2 mg/l	13 weeks
Hexane	Inhalation	auditory system immune system eyes	Not classified	Human	NOAEL Not available	occupational exposure
Hexane	Inhalation	heart skin endocrine system	Not classified	Rat	NOAEL 1.76 mg/l	6 months
Hexane	Ingestion	peripheral nervous system	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 1,140 mg/kg/day	90 days
Hexane	Ingestion	endocrine system hematopoietic system liver immune system kidney and/or bladder	Not classified	Rat	NOAEL Not available	13 weeks

Aspiration Hazard

Name	Value
2-Methylpentane	Aspiration hazard
Cyclohexane	Aspiration hazard
Pentane	Aspiration hazard
Toluene	Aspiration hazard
Hexane	Aspiration hazard

Exposure Levels

Refer Section 8.1 Control Parameters of this Safety Data Sheet.

Interactive Effects

Not determined.

SECTION 12: Ecological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. Additional information leading to material classification in Section 2 is available upon request. In addition, environmental fate and effects data on ingredients may not be reflected in this section because an ingredient is present below the threshold for labelling, an ingredient is not expected to be available for exposure, or the data is considered not relevant to the material as a whole.

12.1. Toxicity

Acute aquatic hazard: GHS Acute 2: Toxic to aquatic life.

Chronic aquatic hazard:

Not chronically toxic to aquatic life by GHS criteria.

No product test data available.

Material	CAS Number	Organism	Туре	Exposure	Test endpoint	Test result
Acetone	67-64-1	Algae other	Experimental	96 hours	EC50	11,493 mg/l
Acetone	67-64-1	Crustecea other		24 hours	LC50	2,100 mg/l
Acetone	67-64-1	Rainbow trout	Experimental	96 hours	LC50	5,540 mg/l
Acetone	67-64-1	Water flea	Experimental	21 days	NOEC	1,000 mg/l
Acetone	67-64-1	Bacteria	Experimental	16 hours	NOEC	1,700 mg/l
Acetone	67-64-1	Redworm	Experimental	48 hours	LC50	>100
Liquefied	68476-85-7	Redworm	Data not	40 110015		N/A
Petroleum Gas	084/0-85-7		available or			IN/A
i cuoicuiii Gas			insufficient for			
			classification			
2-	107-83-5		Data not			N/A
Methylpentane	107-03-5		available or			
wiennyipentane			insufficient for			
			classification			
Cyclohexane	110-82-7	Bacteria	Experimental	24 hours	IC50	97 mg/l
Cyclohexane	110-82-7	Fathead	Experimental	96 hours	LC50	4.53 mg/l
Cyclonexalle	110-02-/	minnow	Experimental	50 nours		4.55 IIIg/1
Cyclohexane	110-82-7	Water flea	Experimental	48 hours	EC50	0.0 mg/l
				48 nours	EC10	0.9 mg/l
		Bacteria	Experimental	06 haven		>1,600 mg/l
Dimethyl Ether		Guppy	Experimental	96 hours	LC50	>4,100 mg/l
Dimethyl Ether		Water flea	Experimental	48 hours	EC50	>4,400 mg/l
Bicylo[3.1.1]H	31393-98-3	Activated	Experimental	3 hours	NOEC	1,000 mg/l
ept-2-ene,2,6,6-		sludge				
Trimethyl-,Pol						
ymer with 6,6-						
Dimethyl-2-						
Methylenebicy						
clo[3.1.1]Hepta						
$\frac{ne}{D} + \frac{1}{2} + 1$	21202 00 2	W/ (1	F · / 1	40.1		> 100 /1
Bicylo[3.1.1]H	31393-98-3	Water flea	Experimental	48 hours	No tox obs at lmt of water sol	>100 mg/l
ept-2-ene,2,6,6-					int of water sol	
Trimethyl-,Pol ymer with 6,6-						
Dimethyl-2-						
Methylenebicy						
clo[3.1.1]Hepta						
ne						
	31393-98-3	Water flea	Endpoint not	21 days	EL10	>100 mg/l
ept-2-ene,2,6,6-	51575 70-5		reached	21 uuy5		
Trimethyl-,Pol						
ymer with 6,6-						
Dimethyl-2-						
Methylenebicy						
clo[3.1.1]Hepta						
ne						
Non-volatile	Trade Secret		Data not			N/A
ingredients			available or			
0			insufficient for			
			classification			

					lmt of water sol	
Rosin ester	Trade Secret	Rainbow trout	Estimated	96 hours	No tox obs at	>100 mg/l
					lmt of water sol	
Rosin ester	Trade Secret	Water flea	Estimated	48 hours	No tox obs at	>100 mg/l
					lmt of water sol	
Rosin ester	Trade Secret	Green Algae	Estimated	72 hours	No tox obs at	>100 mg/l
					lmt of water sol	
Butanone	78-93-3	Activated	Experimental	12 hours	IC50	1,873 mg/l
		sludge				
Butanone	78-93-3	Bacteria	Experimental	16 hours	NOEC	1,150 mg/l
Butanone	78-93-3	Fathead	Experimental	96 hours	LC50	2,993 mg/l
		minnow				
Butanone	78-93-3	Green algae	Experimental	96 hours	EC50	2,029 mg/l
Butanone	78-93-3	Water flea	Experimental	48 hours	EC50	308 mg/l
Butanone	78-93-3	Green Algae	Experimental	96 hours	EC10	1,289 mg/l
Butanone	78-93-3	Water flea	Experimental	21 days	NOEC	100 mg/l
Pentane	109-66-0	Green Algae	Experimental	72 hours	EC50	10.7 mg/l
Pentane	109-66-0	Rainbow trout	Experimental	96 hours	LC50	4.26 mg/l
Pentane	109-66-0	Water flea	Experimental	48 hours	EC50	2.7 mg/l
Pentane	109-66-0	Green Algae	Experimental	72 hours	NOEC	2.04 mg/l
Hexane	110-54-3	Fathead	Experimental	96 hours	LC50	2.5 mg/l
		minnow				
Hexane	110-54-3	Water flea	Experimental	48 hours	LC50	3.9 mg/l
Toluene	108-88-3	Coho Salmon	Experimental	96 hours	LC50	5.5 mg/l
Toluene	108-88-3	Grass Shrimp	Experimental	96 hours	LC50	9.5 mg/l
Toluene	108-88-3	Green Algae	Experimental	72 hours	EC50	12.5 mg/l
Toluene	108-88-3	Leopard frog	Experimental	9 days	LC50	0.39 mg/l
Toluene	108-88-3	Pink Salmon	Experimental	96 hours	LC50	6.41 mg/l
Toluene	108-88-3	Water flea	Experimental	48 hours	EC50	3.78 mg/l
Toluene	108-88-3	Coho Salmon	Experimental	40 days	NOEC	1.39 mg/l
Toluene	108-88-3	Diatom	Experimental	72 hours	NOEC	10 mg/l
Toluene	108-88-3	Water flea	Experimental	7 days	NOEC	0.74 mg/l
Toluene	108-88-3	Activated	Experimental	12 hours	IC50	292 mg/l
		sludge	1			
Toluene	108-88-3	Bacteria	Experimental	16 hours	NOEC	29 mg/l
Toluene	108-88-3	Bacteria	Experimental	24 hours	EC50	84 mg/l
Toluene	108-88-3	Redworm	Experimental	28 days	LC50	>150 mg per kg of
			1			bodyweight
Toluene	108-88-3	Soil microbes	Experimental	28 days	NOEC	<26 mg/kg (Dry
						Weight)

12.2. Persistence and degradability

Material	CAS Number	Test type	Duration	Study Type	Test result	Protocol
Acetone	67-64-1	Experimental		Photolytic half-	147 days (t 1/2)	
		Photolysis		life (in air)		
Acetone	67-64-1	Experimental	28 days	BOD	78 %	OECD 301D - Closed
		Biodegradation	_		BOD/ThBOD	bottle test
Liquefied	68476-85-7	Estimated		Photolytic half-	21.4 days (t	Non-standard method
Petroleum Gas		Photolysis		life (in air)	1/2)	
2-	107-83-5	Data not			N/A	
Methylpentane		available-				
		insufficient				

Cyclohexane	110-82-7	Experimental		Photolytic half-		Non-standard method
		Photolysis		life (in air)	1/2)	
Cyclohexane	110-82-7	Experimental	28 days	BOD	77 %	OECD 301F -
		Biodegradation			BOD/ThBOD	Manometric
						respirometry
Dimethyl Ether	115-10-6	Experimental		Photolytic half-	12.4 days (t	Non-standard method
		Photolysis		life (in air)	1/2)	
Dimethyl Ether	115-10-6	Experimental	28 days	BOD	5 % weight	OECD 301D - Closed
2		Biodegradation	5			bottle test
Bicylo[3.1.1]H	31393-98-3	Experimental	28 days	BOD	4 %	OECD 301D - Closed
ept-2-ene,2,6,6-		Biodegradation			BOD/ThBOD	bottle test
Trimethyl-,Pol		Broughand			202/11202	
ymer with 6,6-						
Dimethyl-2-						
Methylenebicy						
clo[3.1.1]Hepta						
ne						
Non-volatile	Trade Secret	Data not			N/A	
ingredients		available-			1 1/ 1 1	
mgreatents		insufficient				
Rosin ester	Trade Secret	Experimental	28 days	CO2 evolution	47.3 %CO2	OECD 301B - Modified
	fillade Secret	Biodegradation	20 augs	eo2 evolution	evolution/THC	sturm or CO2
		Biodegradation			O2 evolution	
Butanone	78-93-3	Experimental	28 days	BOD	98 %	OECD 301D - Closed
		Biodegradation	5		BOD/ThBOD	bottle test
Pentane	109-66-0	Experimental		Photolytic half-	8.07 days (t	Non-standard method
		Photolysis		life (in air)	1/2)	
Pentane	109-66-0	Experimental	28 days	BOD	87 %	OECD 301F -
		Biodegradation			BOD/ThBOD	Manometric
						respirometry
Hexane	110-54-3	Experimental		Photolytic half-	5.4 days (t 1/2)	Non-standard method
		Photolysis		life (in air)		
Hexane	110-54-3	Experimental	28 days	BOD	100 % weight	OECD 301C - MITI
		Bioconcentrati	5			test (I)
		on				
Toluene	108-88-3	Experimental		Photolytic half-	5.2 days (t 1/2)	
		Photolysis		life (in air)		
Toluene	108-88-3	Experimental	20 days	BOD	80 %	APHA Std Meth
		Biodegradation	· ···· <i>j</i> ~		BOD/ThBOD	Water/Wastewater
		1210 2001 2001000				

12.3 : Bioaccumulative potential

Material	CAS Number	Test type	Duration	Study Type	Test result	Protocol
Acetone	67-64-1	Experimental		Bioaccumulatio	0.65	
		BCF - Other		n factor		
Acetone	67-64-1	Experimental Bioconcentrati		Log Kow	-0.24	
		on				
Liquefied Petroleum Gas	68476-85-7	Estimated Bioconcentrati		Log Kow	2.8	Non-standard method
		on				
2- Methylpentane	107-83-5	Estimated Bioconcentrati		Bioaccumulatio n factor	150	Estimated: Bioconcentration factor
		on				

Cyclohexane	110-82-7	Experimental BCF-Carp	56 days	Bioaccumulatio n factor	129	OECD 305E - Bioaccumulation flow- through fish test
Dimethyl Ether	115-10-6	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Bicylo[3.1.1]H ept-2-ene,2,6,6- Trimethyl-,Pol ymer with 6,6- Dimethyl-2- Methylenebicy clo[3.1.1]Hepta ne	31393-98-3	Experimental Bioconcentrati on		Log Kow	7.41	Non-standard method
Non-volatile ingredients	Trade Secret	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Rosin ester	Trade Secret	Estimated Bioconcentrati on		Bioaccumulatio n factor	7.4	Estimated: Bioconcentration factor
Butanone	78-93-3	Experimental Bioconcentrati on		Log Kow	0.29	Non-standard method
Pentane	109-66-0	Estimated Bioconcentrati on		Bioaccumulatio n factor	26	Estimated: Bioconcentration factor
Hexane	110-54-3	Estimated Bioconcentrati on		Bioaccumulatio n factor	50	Estimated: Bioconcentration factor
Toluene	108-88-3	Experimental BCF - Other	72 hours	Bioaccumulatio n factor	90	
Toluene	108-88-3	Experimental Bioconcentrati on		Log Kow	2.73	

12.4. Mobility in soil

Please contact manufacturer for more details

12.5 Other adverse effects

No information available.

SECTION 13: Disposal considerations

13.1. Disposal methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Dispose of completely cured (or polymerized) material in a permitted industrial waste facility. As a disposal alternative, incinerate uncured product in a permitted waste incineration facility. Facility must be capable of handling aerosol cans. If no other disposal options are available, waste product that has been completely cured or polymerized may be placed in a landfill properly designed for industrial waste.

SECTION 14: Transport Information

Australian Dangerous Goods Code (ADG) - Road/Rail Transport UN No.: UN1950 Proper shipping name: AEROSOLS Class/Division: 2.1 Sub Risk: Not applicable. Packing Group: Not applicable. Special Instructions: Limited quantity may apply Hazchem Code: 2YE IERG: 49

International Air Transport Association (IATA) - Air Transport UN No.: UN1950 Proper shipping name: AEROSOLS, FLAMMABLE Class/Division: 2.1 Sub Risk: Not applicable. Packing Group: Not applicable.

International Maritime Dangerous Goods Code (IMDG)- Marine Transport UN No.: UN1950 Proper shipping name: AEROSOLS Class/Division: 2.1 Sub Risk: Not applicable. Packing Group: Not applicable. Marine Pollutant: Not applicable. Special Instructions: Limited quantity may apply

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Australian Inventory Status:

The chemical components contained within this product are listed on the Australian Inventory of Chemical Substances and are in compliance with the requirements of the Industrial Chemicals (Notification and Assessment) Act 1989 as amended.

Poison Schedule:This product is intended for Industrial or Professional Use only and therefore is not packaged and labelled in accordance with the requirements of the Standard for the Uniform Scheduling of Medicines and Poisons.

SECTION 16: Other information

Revision information:

Complete document review.

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Safety Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.

Greenguard ® is a United States based program. The 'Low VOC' reference related to United States Federal and State regulations exemptions for some solvents.

3M Australia SDSs are available at www.3m.com.au